Find Fxx of the following equation?

f(x, y) = 5x arctan(x/y)
I found Fx of this but I have trouble finding Fxx

1 Answer
May 24, 2018

(10y^3)/(x^2+y^2)^210y3(x2+y2)2

Explanation:

f(x,y) = 5x tan^-1(x/y) impliesf(x,y)=5xtan1(xy)

f_x(x,y) = 5tan^-1(x/y)+5xtimes (1)/(1+(x/y)^2)times 1/yfx(x,y)=5tan1(xy)+5x×11+(xy)2×1y
qquad = 5tan^-1(x/y)+5 (xy)/(x^2+y^2) implies

f_{x x}(x,y) = 5times (1)/(1+(x/y)^2)times 1/y
qquad qquad qquad qquad +5((x^2+y^2)times y-xytimes 2x)/(x^2+y^2)^2

qquad qquad = (5y)/(x^2+y^2)+(5y(y^2-x^2))/(x^2+y^2)^2
qquad qquad = (5y{(x^2+y^2)+(y^2-x^2)})/(x^2+y^2)^2
qquad qquad = (10y^3)/(x^2+y^2)^2