How do you simplify sqrt(x^11)+sqrt(x^5)x11+x5?

2 Answers
May 24, 2018

See a solution process below:

Explanation:

First, we can rewrite this as:

sqrt(x^10 * x) + sqrt(x^4 * x)x10x+x4x

Next, we can use this rule for radicals to simplify each of the terms:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))ab=ab

sqrt(color(red)(x^10) * color(blue)(x)) + sqrt(color(red)(x^4) * color(blue)(x)) =>x10x+x4x

(sqrt(color(red)(x^10)) * sqrt(color(blue)(x))) + (sqrt(color(red)(x^4)) * sqrt(color(blue)(x))) =>(x10x)+(x4x)

x^5sqrt(color(blue)(x)) + x^2sqrt(color(blue)(x))x5x+x2x

We can now factor out the common term giving:

(x^5 + x^2)sqrt(color(blue)(x))(x5+x2)x

If necessary, we can also factor out a common term from the two terms within the parenthesis:

(x^3x^2 + 1x^2)sqrt(color(blue)(x))(x3x2+1x2)x

(x^3 + 1)x^2sqrt(color(blue)(x))(x3+1)x2x

I think the correct version is

sqrt(x^11)+sqrt(x^5)x11+x5

sqrt((x^5)^2*x)+sqrt((x^2)^2*x)(x5)2x+(x2)2x

|x^5|*sqrtx+x^2*sqrtxx5x+x2x

x^4*|x|*sqrtx+x^2*sqrtxx4|x|x+x2x

x^2*sqrtx*(x^2*|x|+1)x2x(x2|x|+1)

where || =absolute value