At what point does the graph of the function below have a minimum value?

x^2+6x+8x2+6x+8

1 Answer
May 24, 2018

(-3,-1)(3,1) minimum

Explanation:

Let yy==x^2+6x+8yy==x2+6x+8

dy/dx=2x+6dydx=2x+6

When dy/dx=0dydx=0,

2x+6=02x+6=0

Solve,

x=-3x=3

When x=-3x=3,

y=(-3)^2+6(-3)+8y=(3)2+6(3)+8
color(white)(y)=-1y=1

:.(-3,-1) minimum

Graph:

graph{x^2+6x+8 [-10, 10, -5, 5]}