W= |u| * v +|v| * u Where u and v and w are all non-zero vectors Show that w bisects the angle between u and v ?

1 Answer
May 25, 2018

See below:

Explanation:

The vector vec ww is in the plane defined by vec uu and vec vv.

Unless vec u = -vec vu=v, we have vec w ne 0w0.

Let theta_uθu and theta_vθv be the angles the vector vec ww makes with vec uu and vec vv, respectively. Then we have

vec w cdot vec u = |vec w| |vec u| cos theta_u wu=wucosθu
qquadqquad = (|vec u|vec v+|vec v| vec u)cdot vec u
qquad qquad = |vec u|(vec v cdot vec u)+|vec v| (vec u cdot vec u)
qquad qquad = |vec u|(vec v cdot vec u+|vec v| |vec u|) implies

|vec w| cos theta_u = vec v cdot vec u+|vec v| |vec u|

By interchanging vec u and vec v we find

|vec w| cos theta_v = vec u cdot vec v+|vec u| |vec v|

and so

|vec w| cos theta_u = |vec w| cos theta_v implies

color(red)(theta_u = theta_v)

Thus vec w bisects the angle between vec u and vec v (except in the special case vec u = -vec v )