How do you prove that #cos2x+cosx=(cosx+1)(2cosx-1)#?

2 Answers
May 26, 2018

#LHS=cos2x+cosx#

#=2cos^2x-1+cosx#

#=2cos^2x+2cosx-cosx-1#

#=2cosx(cosx+1)-1(cosx+1)#

#=(cosx+1)(2cosx-1)=RHS#

May 26, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)cos2x=2cos^2x-1#

#"consider the left side"#

#2cos^2x-1+cosx#

#=2cos^2x+cosx-1#

#"this is a quadratic in cos"#

#"the factors of the product "2xx-1=-2#

#"which sum to + 1 are + 2 and - 1"#

#"split the middle term using these factors"#

#2cos^2x+2cosx-cosx-1larrcolor(blue)"factor by grouping"#

#=2cosx(cosx+1)-1(cosx+1)#

#=(cosx+1)(2cosx-1)#

#="right side"rArr"verified"#