How do you solve sin(2x)cos(x)=sin(x)sin(2x)cos(x)=sin(x)?

2 Answers
May 26, 2018

x=npi,2npi+-(pi/4), and 2npi+-((3pi)/4)x=nπ,2nπ±(π4),and2nπ±(3π4) where n in ZZ

Explanation:

rarrsin2xcosx=sinx

rarr2sinx*cos^2x-sinx=0

rarrsinx(2cos^2x-1)=0

rarrrarrsinx*(sqrt2cosx+1)*(sqrt2cosx-1)=0

When sinx=0

rarrx=npi

When sqrt2cosx+1=0

rarrcosx=-1/sqrt2=cos((3pi)/4)

rarrx=2npi+-((3pi)/4)

When sqrt2cosx-1=0

rarrcosx=1/sqrt2=cos(pi/4)

rarrx=2npi+-(pi/4)

May 26, 2018

x = npi, pi/4 + npi, (3pi)/4 + npi where n in ZZ

Explanation:

We have,

color(white)(xxx)sin2xcosx = sinx

rArr 2sinxcosx xx cosx = sinx [As, sin 2x = 2sinxcosx]

rArr 2sinxcos^2x - sin x = 0

rArr sinx(2cos^2 - 1) = 0

Now,

Either,

sin x = 0 rArr x = sin^-1(0) = npi, where n in ZZ

Or,

color(white)(xxx)2cos^2x - 1 = 0

rArr 2cos^2x - (sin^2x + cos^2x) = 0 [As sin^2x + cos^2 x = 1]

rArr 2cos^2x-sin^2x-cos^2x = 0

rArr cos^2x - sin^2x = 0

rArr (cosx + sin x)(cos x - sin x) = 0

So, Either cos x - sin x = 0 rArr cos x = sin x rArr x = pi/4 +- npi, where n in ZZ

Or,

cos x + sin x = 0 rArr cos x = -sinx rArr x = (3pi)/4 +- npi, where n in ZZ

So, Summing it all up,

x = npi, pi/4 +- npi, (3pi)/4 +- npi, where n in ZZ