We have,
color(white)(xxx)sin2xcosx = sinx
rArr 2sinxcosx xx cosx = sinx [As, sin 2x = 2sinxcosx]
rArr 2sinxcos^2x - sin x = 0
rArr sinx(2cos^2 - 1) = 0
Now,
Either,
sin x = 0 rArr x = sin^-1(0) = npi, where n in ZZ
Or,
color(white)(xxx)2cos^2x - 1 = 0
rArr 2cos^2x - (sin^2x + cos^2x) = 0 [As sin^2x + cos^2 x = 1]
rArr 2cos^2x-sin^2x-cos^2x = 0
rArr cos^2x - sin^2x = 0
rArr (cosx + sin x)(cos x - sin x) = 0
So, Either cos x - sin x = 0 rArr cos x = sin x rArr x = pi/4 +- npi, where n in ZZ
Or,
cos x + sin x = 0 rArr cos x = -sinx rArr x = (3pi)/4 +- npi, where n in ZZ
So, Summing it all up,
x = npi, pi/4 +- npi, (3pi)/4 +- npi, where n in ZZ