We have,
#color(white)(xxx)sin2xcosx = sinx#
#rArr 2sinxcosx xx cosx = sinx# [As, #sin 2x = 2sinxcosx#]
#rArr 2sinxcos^2x - sin x = 0#
#rArr sinx(2cos^2 - 1) = 0#
Now,
Either,
#sin x = 0 rArr x = sin^-1(0) = npi#, where #n in ZZ#
Or,
#color(white)(xxx)2cos^2x - 1 = 0#
#rArr 2cos^2x - (sin^2x + cos^2x) = 0# [As #sin^2x + cos^2 x = 1#]
#rArr 2cos^2x-sin^2x-cos^2x = 0#
#rArr cos^2x - sin^2x = 0#
#rArr (cosx + sin x)(cos x - sin x) = 0#
So, Either #cos x - sin x = 0 rArr cos x = sin x rArr x = pi/4 +- npi#, where #n in ZZ#
Or,
#cos x + sin x = 0 rArr cos x = -sinx rArr x = (3pi)/4 +- npi#, where #n in ZZ#
So, Summing it all up,
#x = npi, pi/4 +- npi, (3pi)/4 +- npi#, where #n in ZZ#