Multiply. (x – 4)(x^2 – 5x + 3)?

1) x^3 + 3x^2 + 11x – 12
2) x^3 – 5x^2 + 13x – 12
3) x^3 – 9x^2 + 23x – 12
4) x^3 – x^2 + 17x – 12

2 Answers
May 26, 2018

3) #x^3-9x^2+23x-12#

Explanation:

#(x-4)(x^2-5x+3)#

Always take the first term of the first brackets (i.e. #x#) and multiply it by each term in the second bracket. Then do the same for #-4# and simplify the expanded expression:

#x*x^2=x^3#
#x*-5x=-5x^2#
#x*3=3x#

#-4*x^2=-4x^2#
#-4*-5x=20x#
#-4*3=-12#

Therefore,

#(x-4)(x^2-5x+3)=x^3-5x^2+3x-4x^2+20x-12#
#(x-4)(x^2-5x+3)=x^3-9x^2+23x-12#

May 26, 2018

Option 3

Explanation:

Observe that the solutions to choose from all have different #x^2# and different #x# terms. So we can pick on either of these to make our selection.

I choose the #x# term

#"First bracket"color(white)("dd")S"econd bracket" #
#color(white)("dd")obrace(color(white)(".dd")xcolor(white)("d"))color(white)("dddd") xxobrace(color(white)("dddd")3color(white)("ddddd"))=+color(white)(".")3x#
#color(white)("dd")(-4)color(white)("dddd") xxcolor(white)( "dd")(-5x)color(white)("d.d")=ul(color(white)(".")+20xlarr" Add")#
#color(white)("dddddddddddddddddddddddddddd")23x#

Of the choices option 3 has #23x#