How to prove #sin(theta+phi)/cos(theta-phi)=(tantheta+tanphi)/(1+tanthetatanphi)#?

3 Answers
May 26, 2018

Please see the proof below

Explanation:

We need

#sin(a+b)=sinacosb+sinbcosa#

#cos(a-b)=cosacosb+sinasinb#

Therefore,

#LHS=sin(theta+phi)/cos(theta-phi)#

#=(sinthetacosphi+costhetasinphi)/(costhetacosphi+sinthetasinphi)#

Dividing by all the terms by#costhetacosphi#

#=((sinthetacosphi)/(costhetacosphi)+(costhetasinphi)/(costhetacosphi))/((costhetacosphi)/(costhetacosphi)+(sinthetasinphi)/(costhetacosphi))#

#=(sintheta/costheta+sinphi/cosphi)/(1+sintheta/costheta*sinphi/cosphi)#

#=(tantheta+tanphi)/(1+tanthetatanphi)#

#=RHS#

#QED#

May 26, 2018

See Explanation

Explanation:

Let
#y=sin(theta+phi)/cos(theta-phi)#

#y=(sinthetacosphi+costhetasinphi)/(costhetacosphi+sinthetasinphi)#

Dividing by #cos theta#,

#y=(tanthetacosphi+sinphi)/(cosphi+tanthetasinphi)#

Dividing by #cosphi#,

#y=(tantheta+tanphi)/(1+tanthetatanphi)#

hence proved.

May 26, 2018

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sin(x+y)=sinxcosy+cosxsiny#

#•color(white)(x)cos(x-y)=cosxcosy+sinxsiny#

#"consider the left side"#

#=(sinthetacosphi+costhetasinphi)/(costhetacosphi+sinthetasinphi)#

#"divide terms on numerator/denominator by "costhetacosphi#
#"and cancel common factors"#

#=((sinthetacosphi)/(costhetacosphi)+(costhetasinphi)/(costhetacosphi))/((costhetacosphi)/(costhetacosphi)+(sinthetasinphi)/(costhetacosphi))=((sintheta)/costheta+sinphi/cosphi)/(1+sintheta/costhetaxxsinphi/cosphi#

#=(tantheta+tanphi)/(1+tanthetatanphi)#

#="right side "rArr"verified"#