How do you find int sec^2x/(1-sin^2x) dx ?

2 Answers
May 26, 2018

Shown below

Explanation:

sin^2 x + cos^2 x = 1 => cos^2x = 1 - sin^2 x

=> int sec^2x / ( cos^2 x ) dx

=> int sec^2 x * 1/cos^2 x dx

=> int sec^4 x dx

=> int sec^2 x * sec^2 x dx

=> int ( 1 + tan^2x) * sec^2 x dx

u = tanx

du = sec^2 x dx

=> int 1 + u ^2 du

=> u + 1/3 u^3 + c

= tanx + 1/3 tan^3 x + c

May 26, 2018

tan(x) + frac(1)(3) tan^(3)(x) + C

Explanation:

We have: int frac(sec^(2)(x))(1 - sin^(2)(x)) dx

= int frac(sec^(2)(x))(cos^(2)(x)) dx

= int frac(sec^(2)(x))(frac(1)(sec^(2)(x))) dx

= int sec^(2)(x) cdot sec^(2)(x) dx

Then, the Pythagorean identity is cos^(2)(x) + sin^(2)(x) = 1.

We can divide through by cos^(2)(x) it to get:

Rightarrow 1 + tan^(2)(x) = sec^(2)(x)

Let's apply this rearranged identity to our integral:

= int (1 + tan^(2)(x)) cdot sec^(2)(x) dx

Now, let's use u-substitution, where u = tan(x) Rightarrow du = sec^(2)(x) dx:

= int (1 + u^(2)) du

= int 1 du + int u^(2) du

= u + frac(1)(3) u^(3) + C

Finally, we can substitute tan(x) in place of u:

= tan(x) + frac(1)(3) tan^(3)(x) + C