We have: int frac(sec^(2)(x))(1 - sin^(2)(x)) dx
= int frac(sec^(2)(x))(cos^(2)(x)) dx
= int frac(sec^(2)(x))(frac(1)(sec^(2)(x))) dx
= int sec^(2)(x) cdot sec^(2)(x) dx
Then, the Pythagorean identity is cos^(2)(x) + sin^(2)(x) = 1.
We can divide through by cos^(2)(x) it to get:
Rightarrow 1 + tan^(2)(x) = sec^(2)(x)
Let's apply this rearranged identity to our integral:
= int (1 + tan^(2)(x)) cdot sec^(2)(x) dx
Now, let's use u-substitution, where u = tan(x) Rightarrow du = sec^(2)(x) dx:
= int (1 + u^(2)) du
= int 1 du + int u^(2) du
= u + frac(1)(3) u^(3) + C
Finally, we can substitute tan(x) in place of u:
= tan(x) + frac(1)(3) tan^(3)(x) + C