S is a geometric sequence? a)Given that (#sqrtx#-1), 1 and (#sqrtx#+1) are the 1st 3 terms of S, find the value of #x#. b)Show that the 5th term of S is 7+5#sqrt2#

3 Answers
May 26, 2018

a)#x=2#
b) see below

Explanation:

a) Since the first three terms are #sqrt x-1#, 1 and #sqrt x + 1#, the middle term, 1, must be the geometric mean of the other two. Hence

#1^2=(sqrt x-1)(sqrt x +1) implies#

#1= x-1 implies x=2#

b)

The common ratio is then #sqrt 2+1#, and the first term is #sqrt 2-1#.

Thus, the fifth term is

#(sqrt 2-1)times (sqrt 2+1)^4=(sqrt 2+1)^3#
#qquad = (sqrt 2)^3+3(sqrt2)^2+3(sqrt2)+1#
#qquad= 2sqrt2+6+3sqrt2+1#
#qquad =7+5sqrt2#

May 26, 2018

Please see below.

Explanation:

Given that,

#rarrsqrtx-1,1,sqrtx+1# are in #GP#.

So,

#rarr(sqrtx-1)/1=1/(sqrtx+1)#

#rarr(sqrtx-1)^2=1#

#rarr(sqrtx)^2-1^2=1#

#rarrx=2#

The first term #(a)=sqrtx-1=sqrt2-1#

The second term #(b)=1#

The common ratio #(r)=b/a=1/(sqrt2-1)=sqrt2+1#

The #n^(th)# term of geometric sequence #(t_n)=a*r^(n-1)#

So, #t_5=(sqrt2-1)*(sqrt2+1)^(5-1)#

#=(sqrt2-1)(sqrt2+1)(sqrt2+1)^3#

#=[(sqrt2)^2-1^2][(sqrt2)^3+3*(sqrt2^2)*1+3*sqrt2*1^2+1^3]#

#=(2-1)(2sqrt2+6+3sqrt2+1)=7+5sqrt2#

May 26, 2018

# x=2 and 5^(th)" term"=7+5sqrt2#.

Explanation:

For any #3# consecutive terms #a,b,c# of a GP, we have,

#b^2=ac#.

Hence, in our case, #1^2=(sqrtx-1)(sqrtx+1)=(sqrtx)^2-1^2,#

# i.e., 1=x-1, or, x=2#.

With #x=2#, the #1^(st) and 2^(nd)# terms of the GP under

reference are, #sqrtx-1=sqrt2-1 and 1#, resp.

So, the common ratio #r=(2^(nd)" term)"-:(1^(st)" term)"#,

#=1/(sqrt2-1)=sqrt2+1#.

#:. 4^(th)" term=r("3^(rd)" term)=(sqrt2+1)(sqrtx+1)#,

#=(sqrt2+1)(sqrt2+1)#,

#=2+2sqrt2+1#,

#=3+2sqrt2#.

Further, #(5^(th)" term)=r("4^(th) term)#,

#=(sqrt2+1)(3+2sqrt2)#,

#=3sqrt2+3+2sqrt2*sqrt2+2sqrt2#.

# rArr 5^(th)" term"=7+5sqrt2#.