#II^(nd) # method : Trig. subst.
#I=int1/(x^2+9)^(1/2) dx#
Take, #x=3tanu=>dx=3sec^2udu#
#and color(blue)(tanu=x/3#
So,
#I=int1/(9tan^2u+9)^(1/2) 3sec^2udu#
#=int(3sec^2u)/((9sec^2u)^(1/2))du#
#=int(3sec^2u)/(3secu)du#
#=intsecudu#
#=ln|secu+tanu|+c#
#=ln|sqrt(tan^2u+1)+tanu|+c# , where, #color(blue)(tanu=x/3#
#:.I=ln|sqrt(x^2/9+1)+x/3|+c#
#=ln|sqrt(x^2+9)/3+x/3|+c#
#=ln|(sqrt(x^2+9)+x)/3|+c#
#=ln|sqrt(x^2+9)+x|-ln3+c#
#=ln|x+sqrt(x^2+9)|+C,where, C=c-ln3#