How do you solve Cos(2x)cos(x)-sin(2x)sin(x)=0cos(2x)cos(x)−sin(2x)sin(x)=0?
1 Answer
May 27, 2018
We have:
cos(2x)cosx = sin(2x)sinxcos(2x)cosx=sin(2x)sinx
1 = tan(2x)tanx1=tan(2x)tanx
Now we have to make some manipulations using
1 = (2sinxcosx)/(cos^2x- sin^2x) * sinx/cosx1=2sinxcosxcos2x−sin2x⋅sinxcosx
cos^2x -sin^2x = 2sin^2xcos2x−sin2x=2sin2x
1 - sin^2x - sin^2x = 2sin^2x1−sin2x−sin2x=2sin2x
1 = 4sin^2x1=4sin2x
1/4 = sin^2x14=sin2x
sinx = +- 1/2sinx=±12
It's now clear that
Hopefully this helps!