How do you solve Cos(2x)cos(x)-sin(2x)sin(x)=0cos(2x)cos(x)sin(2x)sin(x)=0?

1 Answer
May 27, 2018

We have:

cos(2x)cosx = sin(2x)sinxcos(2x)cosx=sin(2x)sinx

1 = tan(2x)tanx1=tan(2x)tanx

Now we have to make some manipulations using tan(2x) = (2sinxcosx)/(cos^2x- sin^2x)tan(2x)=2sinxcosxcos2xsin2x

1 = (2sinxcosx)/(cos^2x- sin^2x) * sinx/cosx1=2sinxcosxcos2xsin2xsinxcosx

cos^2x -sin^2x = 2sin^2xcos2xsin2x=2sin2x

1 - sin^2x - sin^2x = 2sin^2x1sin2xsin2x=2sin2x

1 = 4sin^2x1=4sin2x

1/4 = sin^2x14=sin2x

sinx = +- 1/2sinx=±12

It's now clear that x = pi/6, (5pi)/6, (7pi)/6 and (11pi)/6x=π6,5π6,7π6and11π6. In general form, these are pi/6 + pinπ6+πn and (5pi)/6 + pin5π6+πn. However we must also include when cosx = 0cosx=0, namely when x = pi/2 + pinx=π2+πn. We can confirm graphically.

enter image source here

Hopefully this helps!