Did I do this First order linear differential equation right?

y'-ytanx = 2xsinxcosx
Ok so I was told I.F. = e^(intF(x))eF(x)
and I got y=cosx(sinx-xcosx)+C
Is this right? If not, please help me?

2 Answers
May 29, 2018

y(x) = \frac{\tan (x)}{2}+\frac{1}{18} \sin (3 x)\sec(x)-\frac{2}{3} x \cos ^2(x)+C\sec xy(x)=tan(x)2+118sin(3x)sec(x)23xcos2(x)+Csecx

Explanation:

The integrating factor for a linear first order equation

dy/dx +P(x) y= Q(x)dydx+P(x)y=Q(x)

is given by e^{int P(x)dx}eP(x)dx

For our case P(x) = -tan xP(x)=tanx and Q(x) = 2x sin x cos xQ(x)=2xsinxcosx

Thus the integrating factor is

e^{int (-tan x) dx} = e^{-ln sec x} = cos xe(tanx)dx=elnsecx=cosx

Thus, we multiply both sides of the equation by cos xcosx

This yields

cos x dy/dx-y sin x = 2xsin xcos^2xcosxdydxysinx=2xsinxcos2x

The left hand side is

cos x dy /dx +y d/dx (sin x) = d/dx(y cos x)cosxdydx+yddx(sinx)=ddx(ycosx)

and this means that

y cos x = int 2 x sin s cos^2 x dxycosx=2xsinscos2xdx

The integral can be evaluated easily by integration by parts to yield

y cos x = \frac{\sin (x)}{2}+\frac{1}{18} \sin (3 x)-\frac{2}{3} x \cos ^3(x)+Cycosx=sin(x)2+118sin(3x)23xcos3(x)+C

and thus the solution is

y(x) = \frac{\tan (x)}{2}+\frac{1}{18} \sin (3 x)\sec(x)-\frac{2}{3} x \cos ^2(x)+C\sec xy(x)=tan(x)2+118sin(3x)sec(x)23xcos2(x)+Csecx

May 29, 2018

y = -2/3xcos^2x + 2/3tanx - 2/9sin^3xsecx + Csecx y=23xcos2x+23tanx29sin3xsecx+Csecx

Explanation:

We have:

y'-ytanx = 2xsinxcosx

We can use an integrating factor when we have a First Order Linear non-homogeneous Ordinary Differential Equation of the form;

dy/dx + P(x)y=Q(x)

So, we can put the equation in standard form:

y' - (tanx)y = 2xsinxcosx

Then the integrating factor is given by;

I = e^(int P(x) dx)
\ \ = exp(int \ -tanx) \ dx)
\ \ = exp(-lnsecx)
\ \ = exp(lncosx)
\ \ = cosx

And if we multiply the DE [A] by this Integrating Factor, I, we will have a perfect product differential (in fact the original equation);

:. cosxy' - cosx(tanx)y = cosx 2xsinxcosx #

:. cosxy' - sinxy = 2xsinxcos^2x

:. d/dx (cosx \ y) = 2xsinxcos^2x

This is now separable, so by "separating the variables" we get:

cosx \ y = int \ 2x \ sinx \ cos^2x \ dx

Now, consider the integral:

I = int \ 2x \ sinx \ cos^2x \ dx

We can then apply Integration By Parts:

Let { (u,=2x, => (du)/dx,=2), ((dv)/dx,=sinx \ cos^2x, => v,=-1/3cos^3x ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

We have:

int \ (2x)(sinx \ cos^2x) \ dx = (2x)(-1/3cos^3x) - int \ (-1/3cos^3x)(2) \ dx

:. I = -2/3xcos^3x + 2/3 \ int \ cos^3x \ dx

So, next we must consider the integral:

I_1 = int \ cos^3x \ dx
\ \ \ = int \ cosx \ cos^2x \ dx
\ \ \ = int \ cosx \ (1-sin^2x) \ dx
\ \ \ = int \ cosx \ dx - int \ cosx \ sin^2x \ dx
\ \ \ = sinx - 1/3sin^3x

Combining these results, we have

I = -2/3xcos^3x + 2/3 {sinx - 1/3sin^3x}
\ \ = -2/3xcos^3x + 2/3sinx - 2/9sin^3x

So that, returning to the DE, we have:

cosx \ y = -2/3xcos^3x + 2/3sinx - 2/9sin^3x + C

:. y = 1/cosx{-2/3xcos^3x + 2/3sinx - 2/9sin^3x + C}

:. y = -2/3xcos^2x + 2/3tanx - 2/9sin^3xsecx + Csecx