How do you simplify sqrt48+sqrt14748+147?

3 Answers
May 29, 2018

See a solution process below:

Explanation:

First, we can rewrite the terms under the radicals as:

sqrt(16 * 3) + sqrt(49 * 3)163+493

Now, we can use this rule of exponents to do the simplification:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))ab=ab

(sqrt(16) * sqrt(3)) + (sqrt(49) * sqrt(3)) =>(163)+(493)

4sqrt(3) + 7sqrt(3) =>43+73

(4 + 7)sqrt(3) =>(4+7)3

11sqrt(3)113

May 29, 2018

11sqrt3113

Explanation:

sqrt48 +sqrt14748+147

sqrt16*sqrt3 +sqrt49*sqrt3163+493

4sqrt3 +7sqrt343+73

11sqrt3113

----------------

You must find first number which should be a square number.

Like 1616 and 4949 are square numbers.

May 29, 2018

11sqrt3113

Explanation:

sqrt48+sqrt14748+147

sqrt(2*2*2*2*3)+sqrt(3*7*7)22223+377

sqrt(2^2*2^2*3)+sqrt(3*7^2)22223+372

2*2*sqrt(3)+7*sqrt(3)223+73

4sqrt(3)+7sqrt(3)43+73

11sqrt3113