Can you find the product of z1 and z2? z1=4(cos40˚+ i sin40˚) z2=2(cos20˚+ i sin20˚) Give your answer in rectangular form.

1 Answer
May 30, 2018

z_1z_2=4+4sqrt3iz1z2=4+43i

Explanation:

there are two ways of doing this

method 1

z_1=r_1(costheta+isintheta)z1=r1(cosθ+isinθ)

z_2=r_2(cosphi+isinphi)z2=r2(cosϕ+isinϕ)

=>z_1z_2=r_1r_2(cos(theta+phi)+isin(theta+phi))--(1)z1z2=r1r2(cos(θ+ϕ)+isin(θ+ϕ))(1)

we have

z_1=4(cos40+isin40)z1=4(cos40+isin40)

z_2=2(cos20+isin20)z2=2(cos20+isin20)

:.z_1z_2=(4xx2)(cos(40+20)+isin(40+20))

z_1z_2=8(cos60+isin60)

z_1z_2=8(1/2+isqrt3/2)

z_1z_2=4+4sqrt3i

method 2

change

z=r(costheta+isintheta)

to Euler form

z=re^(itheta)

we have

z_1z_2=r_1r_2e^(itheta)e^(iphi)

z_1z_2=r_1r_2e^(i(theta+phi))

which gives us (1)

and continue from there as above