What is the improper integrals 1/(x^2-16) dx from 0 to 4 ? .

2 Answers
Jun 1, 2018

The integral diverges.
color(blue)[int_0^4(1)/(x^2-16)*dx=lim_(brarr4)int_0^b(1)/(x^2-16)*dx=-1/4*lim_(brarr4)[ln|csctheta+cottheta|]_0^b

Explanation:

show below:

int_0^4(1)/(x^2-16)*dx=lim_(brarr4)int_0^b(1)/(x^2-16)*dx

The integral in the top can be integrated using two ways but I will use one of them: trigonometric substitution.

Suppose:

x=4*sectheta

dx=4*sectheta * tantheta* d theta

(x^2-16)= 16sec^2 theta - 16=16*(sec^2theta-1)=16*tan^2theta

lim_(brarr4)int_0^b(4*sectheta*tantheta*d(theta))/(16*tan^2theta)=

1/4*lim_(brarr4)int_0^b(sectheta*d(theta))/(tantheta)=

1/4*lim_(brarr4)int_0^b(1/(sintheta))=1/4*lim_(brarr4)int_0^bcsctheta*d(theta)

1/4*lim_(brarr4)int_0^bcsctheta*[(csctheta+cottheta)]/[(csctheta+cottheta)]*d(theta)

1/4*lim_(brarr4)int_0^b[(csc^2theta+csctheta*cottheta)]/[(csctheta+cottheta)]*d(theta)

-1/4*lim_(brarr4)[ln|csctheta+cottheta|]_0^b

Jun 1, 2018

The integral diverges.

Explanation:

Perform the decomposition into partial fractions

1/(x^2-16)=1/((x+4)(x-4))=A/(x+4)+B/(x-4)

=(A(x-4)+B(x+4))/((x+4)(x-4))

The denominators are the same, compare the numerators

1=A(x-4)+B(x+4)

Let x=-4, =>, 1=-8A, =>, A=-1/8

Let x=4, =>, 1=8B, =>, B=1/8

Therefore,

1/(x^2-16)=(-1/8)/(x+4)+(1/8)/(x-4)

The indefinite integral is

int(1dx)/(x^2-16)=int(-1/8dx)/(x+4)+int(1/8dx)/(x-4)

=-1/8ln(|x+4|)+1/8ln(|x-4|)+C

Compute the boundaries :

lim_(x->0^+)-1/8ln(|x+4|)+1/8ln(|x-4|)=0

lim_(x->4^-)-1/8ln(|x+4|)+1/8ln(|x-4|)=-oo

Therefore,

int_0^4(dx)/(x^2-16)= " diverges "