The inequality is
x^3+x^2-16x-16>0
Factorising,
(x^2)(x+1-16(x+1))>0
(x^2-16)(x+1)>0
(x+4)(x-4)(x+1)>0
Let f(x)=(x+4)(x-4)(x+1)
Build a sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)-1color(white)(aaaa)4color(white)(aaaaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-4color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)>0 when x in (-4,-1) uu(4,+oo)
graph{x^3+x^2-16x-16 [-19.55, 26.05, -4.47, 18.34]}