How do you solve x^3+x^2-16x-16>0?

2 Answers
Jun 1, 2018

-4 < x <-1 or x>4

Explanation:

We have
x^3+x^2-16x-16=(x-4)(x+1)(x+4)
For
x>4
is this product positive.

The product also positive for

-4 < x < -1

Jun 1, 2018

The solution is x in (-4,-1) uu(4,+oo)

Explanation:

The inequality is

x^3+x^2-16x-16>0

Factorising,

(x^2)(x+1-16(x+1))>0

(x^2-16)(x+1)>0

(x+4)(x-4)(x+1)>0

Let f(x)=(x+4)(x-4)(x+1)

Build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)-1color(white)(aaaa)4color(white)(aaaaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-4color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>0 when x in (-4,-1) uu(4,+oo)

graph{x^3+x^2-16x-16 [-19.55, 26.05, -4.47, 18.34]}