Help with this question, keep getting it wrong - (3x+4)² - (x+7)(x-6) ?

Expand and simplify:
(3x+4)² - (x+7)(x-6)

2 Answers
Jun 1, 2018

rarr(3x+4)^2-(x+7)(x-6)(3x+4)2(x+7)(x6)

=(3x)^2+2*(3x)*4+4^2+(x+7)(x+6)=(3x)2+2(3x)4+42+(x+7)(x+6)

=9x^2+24x+16+x(x+6)+7(x+6)=9x2+24x+16+x(x+6)+7(x+6)

=9x^2+24x+16+x^2+6x+7x+42=9x2+24x+16+x2+6x+7x+42

=10x^2+37x+58=10x2+37x+58

Jun 1, 2018

color(blue)(26-25x-10x^2)2625x10x2

Explanation:

Bracket the two products leaving the negation out side:

-[(3x+4)^2]-[(x+7)(x-6)][(3x+4)2][(x+7)(x6)]

Expand inside the square brackets:

(3x+4)^2=(3x+4)(3x+4)=9x^2+24x+16(3x+4)2=(3x+4)(3x+4)=9x2+24x+16

(x+7)(x-6)=x^2+7x-6x-42=x^2+x-42(x+7)(x6)=x2+7x6x42=x2+x42

Now put these back in the square brackets:

-[9x^2+24x+16]-[x^2+x-42][9x2+24x+16][x2+x42]

Multiply inside the brackets by the negation, then remove brackets and simplify:

-9x^2-24x-16-x^2-x+429x224x16x2x+42

-10x^2-25x+2610x225x+26

It is best practice to express this as:

26-25x-10x^22625x10x2

This ensures that you do not lose negations when doing further calculations.

Negations before brackets often catch students out.

Hope this helps.