Find the area of the region bounded by the curves?

y=2\sinxy=2sinx, y=2\cosxy=2cosx, x=0x=0, and x=\pi/2x=π2

1 Answer
Jun 2, 2018

4-sqrt(2)42

Explanation:

Solving the equation

2sin(x)=2*cos(x)2sin(x)=2cos(x)
in the given interval
we get

x=pi/4x=π4
So our area can be calcultated as

A=2int_0^(pi/4)sin(x)dx+2int_(pi/4)^(pi/2)cos(x)dxA=2π40sin(x)dx+2π2π4cos(x)dx
this gives
A=4-2sqrt(2)A=422