Prove that Sin 10 degree sin 30 degree sin 50 degree sin 70 degree = 1/16?

2 Answers
Jun 2, 2018

LHS=sin10sin30sin50sin70LHS=sin10sin30sin50sin70

=cos(90-10)sin30cos(90-50)cos(90-70)=cos(9010)sin30cos(9050)cos(9070)

=cos(80)*1/2*cos(40)cos(20)=cos(80)12cos(40)cos(20)
=1/(4 sin20)cos(80)cos(40)*2sin20cos(20)=14sin20cos(80)cos(40)2sin20cos(20)

=1/(8 sin20)cos(80)*2cos(40)sin(40)=18sin20cos(80)2cos(40)sin(40)

=1/(16 sin20)*2cos(80)sin(80)=116sin202cos(80)sin(80)

=1/(16 sin20)*sin(160)=116sin20sin(160)

=1/(16 sin20)*sin(180-20)=116sin20sin(18020)

=1/(16 sin20)*sin(20)=1/16=RHS=116sin20sin(20)=116=RHS

Jun 2, 2018

As, sinxsin(60+x)sin(60-x)=1/4sin3xsinxsin(60+x)sin(60x)=14sin3x

rarrsin10sin30sin50sin70sin10sin30sin50sin70

=1/2[sin10sin(60+10)sin(60-10)]=12[sin10sin(60+10)sin(6010)]

=1/2[1/4sin(3xx10)]=1/8sin30=1/8*1/2=1/16=12[14sin(3×10)]=18sin30=1812=116