LHS=sin10sin30sin50sin70LHS=sin10sin30sin50sin70
=cos(90-10)sin30cos(90-50)cos(90-70)=cos(90−10)sin30cos(90−50)cos(90−70)
=cos(80)*1/2*cos(40)cos(20)=cos(80)⋅12⋅cos(40)cos(20)
=1/(4 sin20)cos(80)cos(40)*2sin20cos(20)=14sin20cos(80)cos(40)⋅2sin20cos(20)
=1/(8 sin20)cos(80)*2cos(40)sin(40)=18sin20cos(80)⋅2cos(40)sin(40)
=1/(16 sin20)*2cos(80)sin(80)=116sin20⋅2cos(80)sin(80)
=1/(16 sin20)*sin(160)=116sin20⋅sin(160)
=1/(16 sin20)*sin(180-20)=116sin20⋅sin(180−20)
=1/(16 sin20)*sin(20)=1/16=RHS=116sin20⋅sin(20)=116=RHS