Find derivatives y=tanh sqrt 1+t^2 ?
1 Answer
Jun 2, 2018
dy/d = ( t \ sech^2 sqrt(1+t^2))/(sqrt(1+t^2))
Explanation:
We seek:
dy/dt , wherey =tanh sqrt(1+t^2)
Using the known result:
d/dt tanh = sech^2t
In conjunction with the chain rule, we get:
dy/dt = (sech^2 sqrt(1+t^2))(d/dt sqrt(1+t^2))
\ \ \ \ \ = sech^2 sqrt(1+t^2) \ (1/2(1+t^2)^(-1/2)d/dt(1+t^2))
\ \ \ \ \ = sech^2 sqrt(1+t^2) \ (1/(2sqrt(1+t^2)))(2t)
\ \ \ \ \ = ( t \ sech^2 sqrt(1+t^2))/(sqrt(1+t^2))