Find derivatives y=tanh sqrt 1+t^2 ?

1 Answer
Jun 2, 2018

dy/d = ( t \ sech^2 sqrt(1+t^2))/(sqrt(1+t^2))

Explanation:

We seek:

dy/dt, where y =tanh sqrt(1+t^2)

Using the known result:

d/dt tanh = sech^2t

In conjunction with the chain rule, we get:

dy/dt = (sech^2 sqrt(1+t^2))(d/dt sqrt(1+t^2))

\ \ \ \ \ = sech^2 sqrt(1+t^2) \ (1/2(1+t^2)^(-1/2)d/dt(1+t^2))

\ \ \ \ \ = sech^2 sqrt(1+t^2) \ (1/(2sqrt(1+t^2)))(2t)

\ \ \ \ \ = ( t \ sech^2 sqrt(1+t^2))/(sqrt(1+t^2))