Find the value of (sin 24° cos 6°-sin 6° sin 66°)/(sin 21° cos 39°- cos 51° sin 69°)?

2 Answers
Jun 3, 2018

X=-1X=1

Explanation:

We know that,
(1)sin(90^circ-x)=sin(pi/2-x)=cosx(1)sin(90x)=sin(π2x)=cosx

(2)cos(90^circ-x)=cos(pi/2-x)=sinx(2)cos(90x)=cos(π2x)=sinx

(3)sinAcosB-cosAsinB=sin(A-B)(3)sinAcosBcosAsinB=sin(AB)

We take,

X=(sin 24° cos 6°-sin 6° sin 66°)/(sin 21° cos 39°- cos 51° sin 69°)

"using" : (1) and (2)

sin66^circ=sin(90^circ-24^circ)=cos24^circ

cos51^circ=cos(90^circ-39^circ)=sin39^circ

sin69^circ=sin(90^circ-21^circ)=cos21^circ

So,

X=(sin 24° cos 6°-sin 6° cos24°)/(sin 21° cos 39°- sin39° cos21°)

X=(sin(24^circ-6^circ))/sin(21^circ-39^circ)...to[Apply (3)]

X=(sin18^circ)/sin(-18)

X=(sin18^circ/-sin18^circ)...to[because sin(-theta)=-sintheta]

X=-1

Jun 3, 2018

-1

Explanation:

enter image source here

enter image source here

enter image source here