We know that,
(1)sin(90^circ-x)=sin(pi/2-x)=cosx(1)sin(90∘−x)=sin(π2−x)=cosx
(2)cos(90^circ-x)=cos(pi/2-x)=sinx(2)cos(90∘−x)=cos(π2−x)=sinx
(3)sinAcosB-cosAsinB=sin(A-B)(3)sinAcosB−cosAsinB=sin(A−B)
We take,
X=(sin 24° cos 6°-sin 6° sin 66°)/(sin 21° cos 39°- cos 51° sin 69°)
"using" : (1) and (2)
sin66^circ=sin(90^circ-24^circ)=cos24^circ
cos51^circ=cos(90^circ-39^circ)=sin39^circ
sin69^circ=sin(90^circ-21^circ)=cos21^circ
So,
X=(sin 24° cos 6°-sin 6° cos24°)/(sin 21° cos 39°- sin39°
cos21°)
X=(sin(24^circ-6^circ))/sin(21^circ-39^circ)...to[Apply (3)]
X=(sin18^circ)/sin(-18)
X=(sin18^circ/-sin18^circ)...to[because sin(-theta)=-sintheta]
X=-1