How would the trigonometric expression sin[(arccos (0)-arcsin(x)]be written as an algebraic expression?
1 Answer
Jun 3, 2018
# sin[arccos (0)-arcsin(x)] = sqrt(1 - x^2) #
Explanation:
We seek:
# S = sin[arccos (0)-arcsin(x)] #
Using
# sin(A-B) = sinAcosB - cosAsinB #
We can write:
# S = sin(pi/2) \ cos(arcsinx) - cos(pi/2) \ sin(arcsinx) #
# \ \ = 1 * cos(arcsinx) - 0 #
# \ \ = cos(arcsinx) #
And utilising the pythagorean identity:
# sin^2A + cos^2A -= 1=> cosA = sqrt(1-sin^2A)#
we have:
# S = sqrt(1 - sin^2(arcsinx)) #
# \ \ = sqrt(1 - x^2) #