5/(x + y) + 2/(x - y)=35x+y+2x−y=3
20/(x + y)-3/(x - y)= 120x+y−3x−y=1
Let;
1/(x + y) = a and 1/(x - y) = b1x+y=aand1x−y=b
Therefore;
5/(x + y) + 2/(x - y)=35x+y+2x−y=3
5(1/(x + y)) + 2(1/(x - y))=35(1x+y)+2(1x−y)=3
5a + 2b = 3 - - - eqn15a+2b=3−−−eqn1
Similarly..
20/(x + y)-3/(x - y)= 120x+y−3x−y=1
20(1/(x + y))-3(1/(x - y)) = 120(1x+y)−3(1x−y)=1
20a - 3b = 1 - - - eqn220a−3b=1−−−eqn2
Using Elimination Method!
5a + 2b = 3 - - - eqn15a+2b=3−−−eqn1
20a - 3b = 1 - - - eqn220a−3b=1−−−eqn2
Multiply eqn1eqn1 by 33 and eqn2eqn2 by 22
3(5a + 2b = 3)3(5a+2b=3)
2(20a - 3b = 1)2(20a−3b=1)
15a + 6b = 9 - - - eqn315a+6b=9−−−eqn3
40a - 6b = 2- - - eqn440a−6b=2−−−eqn4
Adding both eqn3 and eqn4eqn3andeqn4 together..
(15a + 40a) + (6b + (-6b))= 9 + 2(15a+40a)+(6b+(−6b))=9+2
55a + 6b - 6b = 1155a+6b−6b=11
55a = 1155a=11
a = 11/55a=1155
a = 1/5a=15
Substituting the value of aa into eqn1eqn1
5a + 2b = 3 - - - eqn15a+2b=3−−−eqn1
5(1/5) + 2b = 35(15)+2b=3
cancel5(1/cancel5) + 2b = 3
1 + 2b= 3
2b = 3 - 1
2b = 2
b = 2/2
b = 1
But;
1/(x + y) = a and 1/(x - y) = b
a = 1/(x + y)
1/5 = 1/(x + y)
Cross multiplying;
1(x + y) = 1(5)
x + y = 5 - - - eqn5
Similarly..
b = 1/(x - y)
1 = 1/(x- y)
1/1 = 1/(x- y)
Cross multiplying;
1(x - y) = 1(1)
x - y = 1 - - - eqn6
Solving simultaenously again..
x + y = 5 - - - eqn5
x - y = 1 - - - eqn6
Using Elimination Method!
Adding eqn5 and eqn6 together;
(x + x) + (y +(-y)) = 5 + 1
2x + y - y = 6
2x = 6
x = 6/2
x = 3
Substituting the value of x into eqn6
x + y = 5 - - - eqn5
3 + y = 5
Collecting like terms;
y = 5 - 3
y = 2
Hence;
x = 3 and y = 2