How do you simplify #\frac { 3x ^ { 0} } { 3x ^ { 4} - 4x ^ { - 1} }#?

2 Answers
Jun 5, 2018

#(3x)/(3x^5-4)#

Explanation:

Remember that #x^o=1#
Multiply numerator and denominator with x to get rid of #x^-1# in the denominator.

If we do this, we get:
#(3x^0)/(3x^4-4x^-1)#
=#(3x)/(3x^4*x-4x^-1*x)#
=#(3x^0*x)/(3x^5-4)#
=#(3x)/(3x^5-4)#

I cannot see that it can be made much simpler than this.

Jun 5, 2018

#(3x)/(3x^5-4)#

Explanation:

#(3x^0)/(3x^4-4x^-1)#

#:.=3/(3x^4-4x^-1)#

#:.=3/(x^-1(3x^5-4))#

#:.=(3x)/(3x^5-4)#