What is the vertex of f(x)=2x^2+4x-1f(x)=2x2+4x1 ?

1 Answer
Jun 6, 2018

(-1 , -0.612)(1,0.612)

Explanation:

To solve this question, we need to know the formula for finding vertex of a general equation.

i.e. ((-b)/(2a) , (-D)/(4a))(b2a,D4a) ... For ax^2+bx+c=0ax2+bx+c=0

Here, DD is Discriminant which is =sqrt(b^2-4ac)=b24ac. It also determines the nature of the roots of the equation.

Now, in the given equation ;

a = 2a=2

b = 4b=4

c =-1c=1

D=sqrt(b^2-4ac)=sqrt(4^2-4(2)(-1))=sqrt(16+8)=sqrt24=2sqrt6D=b24ac=424(2)(1)=16+8=24=26

:. By applying the vertex formula here, we get

((-b)/(2a) , (-D)/(4a))=((-4)/(2xx2) , (-2sqrt6)/(4xx2))

=((-4)/(4) , (-2sqrt6)/(8))

=(-1 , (-sqrt6)/4)

=(-1 , -0.612)

![www.desmos.com/calculator](useruploads.socratic.orguseruploads.socratic.org)

Hence, the vertex of the equation f(x)=2x^2+4x-1=0 is (-1 , -0.612)