What is the value of x in 81^(x^3 + 2x^2) = 27^((5*x)/3)?

1 Answer
Jun 6, 2018

x = 1/2 or x = -5/2x=12orx=52

Explanation:

81^(x^3 + 2x^2) = 27^((5x)/3)81x3+2x2=275x3

Note: 3^4 = 81 and 3^3 = 2734=81and33=27

3^(4(x^3 + 2x^2)) = 3^(3((5x)/3))34(x3+2x2)=33(5x3)

cancel3^(4(x^3 + 2x^2)) = cancel3^(3((5x)/3))

4(x^3 + 2x^2) = 3((5x)/3)

4(x^3 + 2x^2) = cancel3((5x)/cancel3)

4x^3 + 8x^2 = 5x

Dividing through by x

(4x^3)/x + (8x^2)/x = (5x)/x

(4x^(cancel3^2))/cancelx + (8x^(cancel2^1))/cancelx = (5cancelx)/cancelx

4x^2 + 8x = 5

4x^2 + 8x - 5 = 0

Using Factorisation Method..

2 and 10-> "factors"

Proof: 10x - 2x = 8x and 10 xx -2 = -20

Therefore;

4x^2- 2x + 10x - 5 = 0

Grouping the factors;

(4x^2- 2x) + (10x - 5) = 0

Factorising;

2x(2x - 1) + 5(2x - 1) = 0

Seperating the factors;

(2x - 1) (2x + 5) = 0

2x - 1 = 0 or 2x + 5 = 0

2x = 1 or 2x = -5

x = 1/2 or x = -5/2