How to integrate x^2/(x^3+1)?

1 Answer
Jun 7, 2018

1/3 ln(x^3+1)+C13ln(x3+1)+C

Explanation:

Substitute x^3+1 = ux3+1=u.

Then 3x^2dx = du3x2dx=du and our integral

int x^2/(x^3+1)dx x2x3+1dx

becomes

1/3 int (du)/u = 1/3 ln u+C13duu=13lnu+C