How do you prove csc x - sin x = cos x cot xcscxsinx=cosxcotx?

2 Answers
Jun 7, 2018

see below

Explanation:

cscx-sinxcscxsinx

=1/sinx-sinx=1sinxsinx

=(1-sin^2x)/sinx=1sin2xsinx

=cos^2x/sinx=cos2xsinx

=cosx*cosx/sinx=cosxcosxsinx

=cosxcotx=cosxcotx

Jun 7, 2018

Please see the proof below

Explanation:

We need

cscx=1/sinxcscx=1sinx

cos^2x+sin^2x=1cos2x+sin2x=1

cotx=cosx/sinxcotx=cosxsinx

Therefore,

LHS=cscx-sinxLHS=cscxsinx

=1/sinx-sinx=1sinxsinx

=(1-sin^2x)/sinx=1sin2xsinx

=cos^2x/sinx=cos2xsinx

=cosx*cosx/sinx=cosxcosxsinx

=cosxcotx=cosxcotx

=RHS=RHS

QEDQED