How to solve 4sin^2((3x+pi)/6)=3?

So, sin((3x+pi)/6)=+-sqrt3/2. Then what?

2 Answers
Jun 7, 2018

x=(2k+1)piv(2k-1/3)pi

Explanation:

We have sin(2pi/3)=sqrt3/2 (see https://socratic.org/questions/what-is-sin-2pi-3-equal-to)

Therefore
sin((3x+pi)/6)=+-sin(2pi/3)
(3x+pi)/6=(2/3pi +2kpi) v (-2/3pi +2kpi)
-2/3pi should have the same sin value as 4/3pi
so that we get
3x+pi=6(2/3pi +2kpi) v 6(4/3pi +2kpi)
3x=(4pi-pi+12kpi)v(12pi-pi+12kpi)
3x=(3pi+12kpi)v(11pi+12kpi)
x=(pi+4kpi) v (11/3pi+4kpi)
x=(2k+1)pi v (2k-1/3)pi

Jun 8, 2018

x = (2k + 1)pi/3

Explanation:

4sin^2 ((3x + pi)/6) = 3
sin ((3x + pi)/6) = +- sqrt3/2
a. sin ((3x + pi)/6) = sqrt3/2
Trig table and unit circle give 2 solutions for (3x + pi)/6:
1. (3x + pi)/6 = pi/3 --> 3x + pi = 2pi
3x = 2pi - pi = pi + 2kpi -->x = pi/3 + (2kpi)/3
2. (3x + pi)/6 = (2pi)/3 --> 3x + pi = 4pi
3x = 3pi + 2kpi --> x = pi + (2kpi)/3
General answer: x = (2k + 1)pi/3
b. sin ((3x + pi)/6) = - sqrt3/2
Trig table and unit circle give 2 solutions for (3x + pi)/6
1. (3x + pi)/ 6 = (4pi/3) --> (3x + pi) = 8pi
3x = 7pi + 2kpi --> x = (7pi)/3 + (2kpi)/3, or
x = pi/3 + (2kpi)/3
2. (3x + pi)/6 = (5pi)/3 --> 3x + pi = 10pi
3x = 9pi + 2kpi --> x = 3pi + (2kpi)/3, or
x = pi + (2kpi)/3
General answer: x = (2k + 1)pi/3