As per the question, we have
x+1/x = 11x+1x=11
:.(x+1/x)^2=(11)^2 ... [Squaring both sides]
:.x^2+1/x^2+2(x)(1/x)=121
:.x^2+1/x^2+2(cancelx)(1/cancelx)=121
:.x^2+1/x^2+2=121
:.x^2+1/x^2=121-2=119 ... (i)
Now, back to x+1/x=11
(x+1/x)^4=(11)^4
:.x^4+1/x^4+4(x^3)(1/x)+6(x^2)(1/x^2)+4(x)(1/x^3)=(11)^4
:.x^4+1/x^4+4(x^2)+6+4(1/x^2)=14641
:.x^4+1/x^4+4(x^2)+4(1/x^2)=14641-6
:.x^4+1/x^4+4(x^2+1/x^2)=14635
:.x^4+1/x^4+4(119)=14635 ... [Substituting the value of x^2+1/x^2 from (i)]
:.x^4+1/x^4+476=14635
:.x^4+1/x^4=14635-476
:.x^4+1/x^4=14159
Hence, the answer.
Note: If you want to know more about the identity (a+b)^4 or any other, go to THIS SITE.