How do you simplify f(theta)=-tan4theta+sin2theta+cos4theta to trigonometric functions of a unit theta?

1 Answer
Jun 10, 2018

-(4 sin theta cos theta (1-2 sin^2 theta))/(1-8sin^2theta cos^2theta)
qquadqquad -2sin theta cos theta+1-8sin^2theta cos^2theta

Explanation:

We start with the double angle identities :

sin(2 theta) = 2 sin theta cos theta

and

cos(2 theta) = cos^2 theta - sin^2 theta = 2cos^2 theta-1 = 1-2sin^2 theta

Now

cos (4 theta) = cos(2times 2theta)
qquadqquadqquad = 1-2 sin^2(2theta)
qquadqquadqquad = 1-2(2 sin theta cos theta)^2
qquadqquadqquad = 1-8sin^2theta cos^2theta

and

sin(4 theta) = sin(2 times 2theta)
qquadqquadqquad = 2 sin(2theta)cos(2theta)
qquadqquadqquad = 2(2 sin theta cos theta)(1-2sin^2theta)
qquadqquadqquad = 4 sin theta cos theta (1-2 sin^2 theta)

leading to

tan(4theta) = sin(4 theta)/cos(4 theta)
qquadqquadqquad = (4 sin theta cos theta (1-2 sin^2 theta))/(1-8sin^2theta cos^2theta)

Thus

f(theta) = -tan(4 theta)+sin(2 theta)+cos(4 theta)
qquad\ quad=-(4 sin theta cos theta (1-2 sin^2 theta))/(1-8sin^2theta cos^2theta)
qquadqquad -2sin theta cos theta+1-8sin^2theta cos^2theta