How would I solve cos x * cos 2x=0 ?

2 Answers
Jun 10, 2018

x=2npi+-pi/2 or x=npi+-pi/4

Explanation:

cosx(cos2x)=0
=>" either " cosx=0=>x=2npi+-pi/2 " or "
cos2x=0=>2x=2npi+-pi/2" or "x=npi+-pi/4

Jun 10, 2018

pi/2 + 2kpi; (3pi)/2 + 2kpi
pi/4 + kpi; (3pi)/4 + kpi

Explanation:

cos x.cos 2x = 0
Either factor should be zero.
a. cos x = 0
Unit circle gives -->
x = pi/2 + 2kpi, and
x = (3pi)/2 + 2kpi
b. cos 2x = 0
Unit circle gives -->
1. 2x = pi/2 + 2kpi
x = pi/4 + kpi
2. 2x = (3pi)/2 + 2kpi
x = (3pi)/4 + kpi