How do you find the derivative of f(x) = sqrt[sin(2x)]?

1 Answer
Jun 10, 2018

\frac{dy}{dx}=\frac{cos(2x)}{\sqrt{sin(2x)}}

Explanation:

Chain rule:

Firstly, let y=\sqrtsin(2x)

and let u=sin(2x)

this means y=u^{\frac{1}{2}}

Therefore \frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}

\frac{dy}{dx}=\frac{1}{2}u^{-\frac{1}{2}} * 2cos(2x)

Which goes to

\frac{dy}{dx}=\frac{cos2x}{sqrt{u}

bring back u=sin2x

to get

\frac{dy}{dx}=\frac{cos2x}{sqrt{sin2x}}