Can you solve this ?

lim x->+oo [ln(x)/x]

2 Answers
Jun 10, 2018

#Lim_(x->oo)(lnx/x)=0#

Explanation:

.

Using L'Hopitale's rule:

#Lim_(x->oo)(lnx/x)=Lim_(x->oo)((d/dx(lnx))/(d/dx(x)))=Lim_(x->oo)((1/x)/1)=0/1=0#

Jun 10, 2018

from l'hopital's rule
let #y=Lim_(x->oo)ln(x)/x=Lim_(x->oo)1/(x.1)#
substitute for #x=oo#
#y=1/oo=0#