The diagram shows two curves with equations y=sin x and y=sin2x for x values between 0 and pi. the curves meet at the origin and at the points P and Q. a) find P and Q? b)find the areas of the shaded regions A1 and A2?

enter image source here

1 Answer
Jun 11, 2018

We need to set the two curves equal.

sinx=sin(2x)

0=sin(2x)sinx

0=2sinxcosxsinx

0=sinx(2cosx1)

sinx=0orcosx=12

x=0,π,π3

Now we set up our integral expressions for area.

A1=π30sin(2x)sinxdx

A1=[12cos(2x)+cosx]π30

A1=12cos(2π3)+cos(π3)+12cos(0)cos(0)

A1=14+12+121

A1=14 square units.

Now onto A2.

A2=ππ3sinxsin(2x)dx

A2=[cosx+12cos(2x)]ππ3

A2=cos(π)+12cos(2π)(cos(π3)+12cos(2(π3))

A2=1+12+12+14

A2=94

The total area is 52 square units.

Hopefully this helps!