The diagram shows two curves with equations y=sin x and y=sin2x for x values between 0 and pi. the curves meet at the origin and at the points P and Q. a) find P and Q? b)find the areas of the shaded regions A1 and A2?
1 Answer
Jun 11, 2018
We need to set the two curves equal.
sinx=sin(2x)
0=sin(2x)−sinx
0=2sinxcosx−sinx
0=sinx(2cosx−1)
sinx=0orcosx=12
x=0,π,π3
Now we set up our integral expressions for area.
A1=∫π30sin(2x)−sinxdx
A1=[−12cos(2x)+cosx]π30
A1=−12cos(2π3)+cos(π3)+12cos(0)−cos(0)
A1=14+12+12−1
A1=14 square units.
Now onto
A2=∫ππ3sinx−sin(2x)dx
A2=[−cosx+12cos(2x)]ππ3
A2=−cos(π)+12cos(2π)−(−cos(π3)+12cos(2(π3))
A2=1+12+12+14
A2=94
The total area is
Hopefully this helps!