How do you solve (11x - 5) ^ { 2} - ( 10x - 1) ^ { 2} - ( 3x - 20) ( 7x + 10) = 124?

2 Answers
Jun 12, 2018

color(crimson)(x = 40/53

Explanation:

Follow the PEMDAS Rule to solve.

![https://www.thecalculatorsite.com/articles/units/http://how-does-pemdas-work.php](https://useruploads.socratic.org/aVZkVtW6T8yQ71ldZppO_pemdas.png)

(11x - 5)^2 - (10x-1)^2 - (3x-2)(7x+10) = 124

121x^2 - 110x + 25 - 100x^2 + 20x - 1 - 21x^2 - 30x + 14x + 20 = 124, color(purple)(" Removing Braces"

121x^2 - 100x^2 - 21x^2 - 110x + 20x - 30x + 14x + 25 - 1 + 20 = 124, color(purple)("Bringing like terms together"

0 x^2 - 106x + 44 = 124, color(purple)("Adding / Subtracting"

106x = - 124 +44

106x = - 80

color(crimson)(x = 80/106 " or " x = 40/53, color(purple)("Simplifying"

Jun 12, 2018

x=-5

Explanation:

We have

(11x - 5) ^ { 2} - ( 10x - 1) ^ { 2}
= (11x-5-10x+1)(11x-5+10x-1)
= (x-4)(21x-6) = 21x^2-90x+24

and

( 3x - 20) ( 7x + 10) = 21 x^2-110x-200

Thus, the equation is

(21x^2-90x+24)-(21 x^2-110x-200)=124 implies

20x+ 100 = 0 implies 20(x+5) = 0 implies

x = -5