Sin(2sin^-1x)=?

1 Answer
Jun 12, 2018

sin(2arcsinx) = 2xsqrt(1-x^2)sin(2arcsinx)=2x1x2

Explanation:

Knowing that:

sin(2alpha) = 2sin alpha cos alphasin(2α)=2sinαcosα

we have:

sin(2arcsinx) = 2sin(arcsinx)cos (arcsinx)sin(2arcsinx)=2sin(arcsinx)cos(arcsinx)

Now, by definition:

sin(arcsinx) = xsin(arcsinx)=x

Let y = arcsinxy=arcsinx, so that x = sinyx=siny with y in (-pi/2,pi/2)y(π2,π2) and cos y >0cosy>0. Then:

cosy = sqrt(1-sin^2y) = sqrt(1-x^2)cosy=1sin2y=1x2

Finally:

sin(2arcsinx) = 2xsqrt(1-x^2)sin(2arcsinx)=2x1x2