What the is the polar form of #x^2-y^2 = 6x+-x^2y-y #?

1 Answer
Jun 12, 2018

I get #r(\cos^2(\theta)-\sin^2\theta))=6\cos(\theta)\pm \sin(\theta)+r^2\cos^2(\theta)\sin(\theta)#.

Explanation:

Put in #x=r\cos(\theta), y=r\sin(\theta)#. Then

#r^2(\cos^2(\theta)-\sin^2\theta))=6r\cos(\theta)\pm r\sin(\theta)+r^2\cos^2(\theta)\sin(\theta)#

Since every term has a factor of #r#, either #r=0# or you can divide by #r#. The latter gives

#r(\cos^2(\theta)-\sin^2\theta))=6\cos(\theta)\pm \sin(\theta)+r^2\cos^2(\theta)\sin(\theta)#

This already contains #r=0# when #\tan(\theta)=\pm 6# and so it's the complete solution.