If one is familiar with the following factorisation, then the
solution can easily be obtained :
#a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).#
#:. "The Expression (exp.)="8x^3+y^3+64-24xy#,
#=(2x)^3+(y)^3+(4)^3-3(2x)(y)(4)#,
#=(2x+y+4){(2x)^2+(y)^2+(4)^2-(2x)(y)-(y)(4)-(4)(2x)}#,
#=(2x+y+4)(4x^2+y^2+16-2xy-4y-8x)#, is the
desired factorisation!
Otherwise :
Suppose that, #2x+y=u#.
#:. (2x+y)^3=u^3#.
#:. (2x)^3+y^3+3(2x)(y)(2x+y)=u^3," &, as, "2x+y=u, #
# 8x^3+y^3+6uxy=u^3,#
# or, 8x^3+y^3=u^3-6uxy#.
Adding #(64-24xy)# on both sides, we get,
# 8x^3+y^3+64-24xy=u^3-6uxy+64-24xy,#
#={(4)^3+(u)^3}-6uxy-24xy#,
#={color(red)((4+u))(4^2-4u+u^2)}-6xycolor(red)((u+4)),......[because, m^3+n^3=(m+n)^3-3mn(m+n)]#,
#=(u+4){(16-4u+u^2)-6xy}#,
#={(2x+y)+4}{16-4(2x+y)+(2x+y)^2-6xy}......[because, u=(2x+y)]#,
#=(2x+y+4){16-8x-4y+4x^2+4xy+y^2-6xy}#,
#=(2x+y+4)(4x^2+y^2+16-8x-4y-2xy)#, as before!
Enjoy Maths.!