How do you prove tan^4 x + 2tan^2 x + 1 = sec^4 x?

1 Answer
Jun 12, 2018

see below

Explanation:

we need the identity

color(red)(1+tan^2x=sec^2x)

LHSrarrtan^4x+2tan^2x+1

=tan^4x+tan^2x+color(red)(tan^2x+1)

=tan^4x+tan^2x+sec^2x

=tan^2xcolor(red)((tan^2x+1))+sec^2x

=tan^2x(sec^2x)+sec^2x

=sec^2xcolor(red)((tan^2x+1))

=sec^2xsec^2x

=sec^4x