The derivative of y=sin^-1(x/2)y=sin1(x2) is?

2 Answers
Jun 13, 2018

dy/dx=1/(2sqrt(1-x^2/4))dydx=121x24

Explanation:

If y=sin^-1(f(x))y=sin1(f(x)) then dy/dx=(f'(x))/sqrt(1-f(x)^2)

f(x)=x/2
f'(x)=1/2
f(x)^2=x^2/4

dy/dx=1/(2sqrt(1-x^2/4))

Jun 13, 2018

(dy)/(dx)=1/(sqrt(4-x^2))

Explanation:

y=sin^(-1)(x/2)

=>x/2=siny

differentiate wrt x

1/2=cosy(dy)/(dx)

:. (dy)/(dx)=1/(2cosy)--(1)

but

sin^2u+cos^2u=1

:. cos^2y==1-sin^2y

cosy=sqrt(1-(x/2)^2

sqrt(1-(x^2/4)

=sqrt((4-x^2)/4

=1/2sqrt(4-x^2)

(1)rarr(dy)/(dx)=1/(2(1/2)sqrt(4-x^2))

(dy)/(dx)=1/(sqrt(4-x^2))