How to differentiate tany = ((3x-x^3)/(1-3x^2)) ?
tany = ((3x-x^3)/(1-3x^2)) tany=(3x−x31−3x2)
2 Answers
Explanation:
I assume we're differentiating with respect to
d/dxtany=d/dx((3x-x^3)/(1-3x^2))ddxtany=ddx(3x−x31−3x2)
On the left, we need to use the chain rule. On the right, we'll use the quotient rule.
sec^2y(dy/dx)=((d/dx(3x-x^3))(1-3x^2)-(3x-x^3)(d/dx(1-3x^2)))/(1-3x^2)^2sec2y(dydx)=(ddx(3x−x3))(1−3x2)−(3x−x3)(ddx(1−3x2))(1−3x2)2
Finding these derivatives and simplifying:
sec^2ydy/dx=((3-3x^2)(1-3x^2)-(3x-x^3)(-6x))/(1-3x^2)^2sec2ydydx=(3−3x2)(1−3x2)−(3x−x3)(−6x)(1−3x2)2
sec^2ydy/dx=(3x^4+6x^2+3)/(1-3x^2)^2sec2ydydx=3x4+6x2+3(1−3x2)2
You may notice the simplification:
sec^2ydy/dx=(3(x^2+1)^2)/(1-3x^2)^2sec2ydydx=3(x2+1)2(1−3x2)2
Now, we solve for the derivative:
dy/dx=1/sec^2y(3(x^2+1)^2)/(1-3x^2)^2dydx=1sec2y3(x2+1)2(1−3x2)2
It's weird to leave the answer in this form, but we have a way around it! Recall that
dy/dx=1/(tan^2y+1)(3(x^2+1)^2)/(1-3x^2)^2dydx=1tan2y+13(x2+1)2(1−3x2)2
And we know that
dy/dx=1/((3x-x^3)^2/(1-3x^2)^2+1)(3(x^2+1)^2)/(1-3x^2)^2dydx=1(3x−x3)2(1−3x2)2+13(x2+1)2(1−3x2)2
Let's simplify that:
dy/dx=(1-3x^2)^2/((3x-x^3)^2+(1-3x^2)^2)(3(x^2+1)^2)/(1-3x^2)^2dydx=(1−3x2)2(3x−x3)2+(1−3x2)23(x2+1)2(1−3x2)2
Cancel the
dy/dx=(3(x^2+1)^2)/(x^6+3x^4+3x^2+1)dydx=3(x2+1)2x6+3x4+3x2+1
Which can be simplified:
dy/dx=(3(x^2+1)^2)/(x^2+1)^3dydx=3(x2+1)2(x2+1)3
dy/dx=3/(x^2+1)dydx=3x2+1
Explanation:
Recall that,
So, if we subst.
readily derived!