How to differentiate tany = ((3x-x^3)/(1-3x^2)) ?

tany = ((3x-x^3)/(1-3x^2)) tany=(3xx313x2)

2 Answers
Jun 13, 2018

dy/dx=3/(x^2+1)dydx=3x2+1

Explanation:

I assume we're differentiating with respect to xx.

d/dxtany=d/dx((3x-x^3)/(1-3x^2))ddxtany=ddx(3xx313x2)

On the left, we need to use the chain rule. On the right, we'll use the quotient rule.

sec^2y(dy/dx)=((d/dx(3x-x^3))(1-3x^2)-(3x-x^3)(d/dx(1-3x^2)))/(1-3x^2)^2sec2y(dydx)=(ddx(3xx3))(13x2)(3xx3)(ddx(13x2))(13x2)2

Finding these derivatives and simplifying:

sec^2ydy/dx=((3-3x^2)(1-3x^2)-(3x-x^3)(-6x))/(1-3x^2)^2sec2ydydx=(33x2)(13x2)(3xx3)(6x)(13x2)2

sec^2ydy/dx=(3x^4+6x^2+3)/(1-3x^2)^2sec2ydydx=3x4+6x2+3(13x2)2

You may notice the simplification:

sec^2ydy/dx=(3(x^2+1)^2)/(1-3x^2)^2sec2ydydx=3(x2+1)2(13x2)2

Now, we solve for the derivative:

dy/dx=1/sec^2y(3(x^2+1)^2)/(1-3x^2)^2dydx=1sec2y3(x2+1)2(13x2)2

It's weird to leave the answer in this form, but we have a way around it! Recall that tan^2y+1=sec^2ytan2y+1=sec2y.

dy/dx=1/(tan^2y+1)(3(x^2+1)^2)/(1-3x^2)^2dydx=1tan2y+13(x2+1)2(13x2)2

And we know that tany=(3x-x^3)/(1-3x^2)tany=3xx313x2:

dy/dx=1/((3x-x^3)^2/(1-3x^2)^2+1)(3(x^2+1)^2)/(1-3x^2)^2dydx=1(3xx3)2(13x2)2+13(x2+1)2(13x2)2

Let's simplify that:

dy/dx=(1-3x^2)^2/((3x-x^3)^2+(1-3x^2)^2)(3(x^2+1)^2)/(1-3x^2)^2dydx=(13x2)2(3xx3)2+(13x2)23(x2+1)2(13x2)2

Cancel the (1-3x^2)^2(13x2)2 terms and proceed by expanding (3x-x^3)^2+(1-3x^2)^2(3xx3)2+(13x2)2:

dy/dx=(3(x^2+1)^2)/(x^6+3x^4+3x^2+1)dydx=3(x2+1)2x6+3x4+3x2+1

Which can be simplified:

dy/dx=(3(x^2+1)^2)/(x^2+1)^3dydx=3(x2+1)2(x2+1)3

dy/dx=3/(x^2+1)dydx=3x2+1

Jun 13, 2018

3/(1+x^2)31+x2.

Explanation:

Recall that, tan3theta=(3tantheta-tan^3theta)/(1-3tan^2theta)tan3θ=3tanθtan3θ13tan2θ.

So, if we subst. x=tanthetax=tanθ [this we can do, because the range of

tantan function is RR], then,

tany=tan((3x-x^3)/(1-3x^2)),

rArr y=tan^-1((3x-x^3)/(1-3x^2)),

=tan^-1{tan((3tantheta-tan^3theta)/(1-3tan^2theta))},

=tan^-1(tan3theta).

rArr y=3theta=3tan^-1x.

:. dy/dx=3*1/(1+x^2)=3/(1+x^2), as Respected mason m. has

readily derived!