How to solve log _{x}36+log _{18}3x = 3logx36+log183x=3 ?

log _{x}36+log _{18}3x = 3logx36+log183x=3

2 Answers
Jun 13, 2018

x in {324; 6}x{324;6}

Explanation:

frac{log_2 36}{log_2 x} + frac{log_2 3 + log_2 x}{log_2 18} = 3log236log2x+log23+log2xlog218=3

log_2 x = ylog2x=y

log_2 3 = Klog23=K

frac{log_2 18 log_2 36}{y} + K + y = 3 log_2 18log218log236y+K+y=3log218

frac{log_2 18 log_2 36}{y} + y = 3 (1 + 2 K) - Klog218log236y+y=3(1+2K)K

c + y^2 = - by c+y2=by

b = - 3 - 5Kb=35K

c = (1 + 2 K)(2 + 2 K) = 4K^2 + 6K + 2c=(1+2K)(2+2K)=4K2+6K+2

Delta = (5K + 3)^2 - 16K^2 - 24K - 8

Delta = 9K^2 + 6K + 1

y = log_2 x = (3 + 5K pm (3K + 1))/2

x_1 =2 wedge (2 + 4K) = 4 * 3^4

x_2 =2 wedge (1 + K) = 2 * 3

Jun 13, 2018

color(blue)(x=324, x=6)

Explanation:

log_x36=log_18(36)/(log_18(x) (change of base)

log_18(36)/(log_18(x))+log_18(3x)=3

(2log_18(6))/(log_18(x))+log_18(x)+log_18(3)=3

Let m=log_18(x)

(2log_18(6))/m+m+log_18(3)=3

(2log_18(6))+m^2+log_18(3)m=3m

m^2+m(log_18(3)-3)+2log_18(6)=0

Using quadratic formula:

m=(-(log_18(3)-3)+-sqrt(((log_18(3)-3))^2-4(2log_18(6))))/2

m=(-(log_18(3)-3)+ sqrt(((log_18(3)-3))^2-(8log_18(6))))/2

=2

m=(-(log_18(3)-3)-sqrt(((log_18(3)-3))^2-(8log_18(6))))/2

=0.6199062340

m=log_18(x)

log_18(x)=2

18^(log_18(x))=18^2

x=18^2=324

log_18(x)=0.6199062340

18^(log_18(x))=18^(0.6199062340)

x=18^(0.6199062340)=6