How to find the velocity and acceleration at t=0?

enter image source here

1 Answer
Jun 14, 2018

vec v(0) = < 6, 2,-2>
vec a(0) = <0,4,4>

Explanation:

We differentiate

vec r(t) = <2sin 3t,e^{2t},1+e^{-2t}>

component by component to calculate the velocity :

vec v(t) = < d/dt(2sin 3t),d/dt(e^{2t}),d/dt(1+e^{-2t})>
qquad qquad = <6 cos 3t,2e^{2t},-2e^{-2t}>

Differentiating once again, we get the acceleration:

vec a(t) = < d/dt(6 cos 3t),d/dt(2e^{2t}),d/dt(-2e^{-2t})>
qquad qquad = <-18 sin 3t,4e^{2t},4e^{-2t}>

Thus, at t=0 we have

vec v(0) = < 6, 2,-2>
vec a(0) = <0,4,4>