How to I solve homogeneous equation of #y dy/dx +x=2y# ?

3 Answers
Jun 14, 2018

The general solution is #ln(|y/x-1|)-x/(y-1)=-ln(|x|)+C#

Explanation:

The ODE is

#ydy/dx+x=2y#

Divide by #y#

#dy/dx+x/y=2#

Let #y=vx#

Then,

#dy/dx=v+x(dv)/dx#

Substituting in the ODE

#v+x(dv)/dx+1/v=2#

#x(dv)/dx=2-v-1/v=(2v-v^2-1)/(v)=-(v^2-2v+1)/v#

Therefore,

#(vdv)/(v-1)^2=-dx/x#

Integrating both sides

#int(vdv)/(v-1)^2=-intdx/x=-lnx+C#

For the #LHS#,

Let #u=v-1#, #=>#, ##du=dv

#int(vdv)/(v-1)^2=int((u+1)du)/u^2#

#=int(1/u+1/u^2)du#

#=ln(u)-1/u#

#=ln(v-1)-1/(v-1)#

#=ln(y/x-1)-1/(y/x-1)#

#=ln(y/x-1)-x/(y-x)#

The general solution is

#ln(y/x-1)-x/(y-x)=-ln(x)+C#

Where #C in RR#

Jun 14, 2018

Substitute #u=y/x# and solve

Explanation:

Be careful with terminology here - "homogeneous ordinary differential equation" can mean two entirely different things!

1) An equation in #y# and its derivatives w.r.t. #x# where all coefficients are functions of #x# alone.
2) A first-order ODE where #dy/dx# is equal to a function of #y/x#. This type of ODE can be solved by the substitution #u=y/x#.

In this question we are dealing with the second meaning; let's rearrange into the needed form:
#ydy/dx+x=2y#
#dy/dx=2-x/y#

Substitute #u=y/x#. Note that by the quotient rule #(du)/dx=d/dx(y/x)=(xdy/dx-y)/x^2=1/xdy/dx-y/x^2=1/xdy/dx-u/x#
so
#dy/dx=x(du)/dx+u#

Substituting in:
#x(du)/dx+u=2-1/u#
#x(du)/dx=2-u-1/u#
#1/(2-u-1/u)(du)/dx=1/x#

This is now a separable equation, so integrate for the solution:
#int(du)/(2-u-1/u)=intdx/x#

The #x# integral is straightforward - the natural logarithm #ln|x|+C#. The #u# integral needs some rearrangement.

#int(du)/(2-u-1/u)=intu/(2u-u^2-1)du=int-u/(u^2-2u+1)du#
#=int-u/(u-1)^2du=int-(u-1+1)/(u-1)^2du#
#=int-(u-1)/(u-1)^2-1/(u-1)^2du#
#=int-1/(u-1)-1/(u-1)^2du#
#=-ln|u-1|+1/(u-1)+C#

Put the two integral solutions together:
#-ln|u-1|+1/(u-1)=ln|x|+C#

Now substitute back for #y#:
#-ln|y/x-1|+1/(y/x-1)=ln|x|+C#

Some tidying up rearrangement:
#-ln|(y-x)/x|+x/(y-x)=ln|x|+C#
#-ln|y-x|+ln|x|+x/(y-x)=ln|x|+C#
#-ln|y-x|+x/(y-x)=C#
#ln|y-x|-x/(y-x)=C#

As we have both #y# and #x# both inside and outside of the logarithm there's no beautiful way to express this as a function of one in terms of the other; this is as tidy as we get.

Jun 14, 2018

The general solution of given equation is :
#y=x+c*e^(x/(x-y)#

Explanation:

Here,

#y(dy)/(dx)+x=2y#

#=>y(dy)/(dx)=2y-x#

#=>(dy)/(dx)=(2y-x)/y#

#=>(dy)/(dx)=(2(y/x)-1)/(y/x)to#[homogeneous euqn.]

Subst. #y/x=v=>y=vx=>(dy)/(dx)=v+x(dv)/(dx)#

So,

#v+x(dv)/(dx)=(2v-1)/v#

#=>x(dv)/(dx)=(2v-1)/v-v=(2v-1-v^2)/v=-(v^2-2v+1)/v#

#=>x(dv)/(dx)=-(v-1)^2/v#

#=>v/(v-1)^2dv=-1/xdx#

Integrating both sides:

#intv/(v-1)^2dv=int-1/xdx#

#=>int((v-1)+1)/(v-1)^2dv=-int1/xdx#

#=>int[1/(v-1)+1/(v-1)^2]dv=-ln|x|+lnc#

#=>ln|v-1|-1/(v-1)=-ln|x|+lnc#

#=>ln|v-1|+ln|x|-lnc=1/(v-1)#

#ln|((v-1)x)/c|=-1/(v-1)#

Subst. back ,#y/x=v # ,we get

#ln|((y/x-1)x)/c|=-1/(y/x-1)#

#=>ln|(y-x)/c|=-x/(y-x)#

#=>ln|(y-x)/c|=x/(x-y)#

#(y-x)/c=e^(x/(x-y)#

#y-x=c*e^(x/(x-y)#

#=>y=x+c*e^(x/(x-y)#

This is the general solution of given equation.