Let f(x,y)=xe^y -ye^x The gradient of f at (0,0) is ∇f(0,0)=?
2 Answers
# bb grad f(0,0) = bb hat(i) - bb hat(j) #
Explanation:
We have:
# f(x,y) = xe^y - ye^x #
We can compute the first order partial derivatives. Remember when partially differentiating that we differentiate wrt the variable in question whilst treating the other variables as constant. And so:
# f_x = (partial f)/(partial x) #
# \ \ \ = e^y - ye^x #
# f_y = (partial f)/(partial y) #
# \ \ \ = xe^y - e^x #
Then the Del, or gradient operator, using a standard basis, is given by:
# bb grad f(x,y) = (partial f)/(partial x) bb hat(i) + (partial f)/(partial y) bb hat(j) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (e^y - ye^x) bb hat(i) + (xe^y - e^x) bb hat(j) #
And so at the origin, we have:
# bb grad f(0,0) = (e^0 - 0) bb hat(i) + (0 - e^0) bb hat(j) #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = bb hat(i) - bb hat(j) #