What is the integral of secxtan2xdx?

1 Answer
Jun 14, 2018

cscx+C

Explanation:

Let's rewrite the integrand:

secxtan2xdx=1cosxsin2xcos2xdx=cosxsin2x

Here, recognize that cosxsin2xdx=cosxsinx1sinxdx=cotxcscxdx=cscx+C.

Another way we can solve cosxsin2xdx is by letting u=sinx so du=cosxdx. Then,

cosxsin2xdx=u2du=u1+C=1sinx+C=cscx+C.