What is the integral of ∫secxtan2xdx?
1 Answer
Jun 14, 2018
Explanation:
Let's rewrite the integrand:
∫secxtan2xdx=∫1cosxsin2xcos2xdx=∫cosxsin2x
Here, recognize that
Another way we can solve
∫cosxsin2xdx=∫u−2du=−u−1+C=−1sinx+C=−cscx+C .