Derivative of x^(lnx)^ln(lnx)?
2 Answers
Explanation:
#y=x^((lnx)^(ln(lnx)))#
Take the natural log of both sides:
#lny=ln(x^((lnx)^(ln(lnx))))=(lnx)^ln(lnx)(lnx)=(lnx)^(ln(lnx)+1)#
Take the natural log once more:
#ln(lny)=ln((lnx)^(ln(lnx)+1))=(ln(lnx)+1)(ln(lnx))#
Now take the derivative of both sides. Use the chain rule on the left and product and chain rules on the right.
#1/lny(d/dxlny)=(d/dx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(d/dxln(lnx))#
#1/lny(1/y)dy/dx=(1/lnxd/dxlnx)ln(lnx)+(ln(lnx)+1)(1/lnxd/dxlnx)#
#1/(ylny)dy/dx=ln(lnx)/(xlnx)+(ln(lnx)+1)/(xlnx)#
Solving for the derivative:
#dy/dx=(ylny(2ln(lnx)+1))/(xlnx)#
Substituting in
#dy/dx=(x^((lnx)^(ln(lnx)))(lnx)^(ln(lnx)+1)(2ln(lnx)+1))/(xlnx)#
#dy/dx=x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)#
Explanation:
Let,
For simplicity we take,
So,
Taking log ,we get
Again taking log,we get
Diff. w. r. t.
OR. from
So,