Derivative of x^(lnx)^ln(lnx)?
2 Answers
Explanation:
y=x^((lnx)^(ln(lnx)))y=x(lnx)ln(lnx)
Take the natural log of both sides:
lny=ln(x^((lnx)^(ln(lnx))))=(lnx)^ln(lnx)(lnx)=(lnx)^(ln(lnx)+1)lny=ln(x(lnx)ln(lnx))=(lnx)ln(lnx)(lnx)=(lnx)ln(lnx)+1
Take the natural log once more:
ln(lny)=ln((lnx)^(ln(lnx)+1))=(ln(lnx)+1)(ln(lnx))ln(lny)=ln((lnx)ln(lnx)+1)=(ln(lnx)+1)(ln(lnx))
Now take the derivative of both sides. Use the chain rule on the left and product and chain rules on the right.
1/lny(d/dxlny)=(d/dx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(d/dxln(lnx))1lny(ddxlny)=(ddx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(ddxln(lnx))
1/lny(1/y)dy/dx=(1/lnxd/dxlnx)ln(lnx)+(ln(lnx)+1)(1/lnxd/dxlnx)1lny(1y)dydx=(1lnxddxlnx)ln(lnx)+(ln(lnx)+1)(1lnxddxlnx)
1/(ylny)dy/dx=ln(lnx)/(xlnx)+(ln(lnx)+1)/(xlnx)1ylnydydx=ln(lnx)xlnx+ln(lnx)+1xlnx
Solving for the derivative:
dy/dx=(ylny(2ln(lnx)+1))/(xlnx)dydx=ylny(2ln(lnx)+1)xlnx
Substituting in
dy/dx=(x^((lnx)^(ln(lnx)))(lnx)^(ln(lnx)+1)(2ln(lnx)+1))/(xlnx)dydx=x(lnx)ln(lnx)(lnx)ln(lnx)+1(2ln(lnx)+1)xlnx
dy/dx=x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)dydx=x(lnx)ln(lnx)−1(lnx)ln(lnx)(2ln(lnx)+1)
Explanation:
Let,
For simplicity we take,
So,
Taking log ,we get
Again taking log,we get
Diff. w. r. t.
OR. from
So,