Derivative of x^(lnx)^ln(lnx)?

2 Answers
Jun 14, 2018

x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)x(lnx)ln(lnx)1(lnx)ln(lnx)(2ln(lnx)+1)

Explanation:

y=x^((lnx)^(ln(lnx)))y=x(lnx)ln(lnx)

Take the natural log of both sides:

lny=ln(x^((lnx)^(ln(lnx))))=(lnx)^ln(lnx)(lnx)=(lnx)^(ln(lnx)+1)lny=ln(x(lnx)ln(lnx))=(lnx)ln(lnx)(lnx)=(lnx)ln(lnx)+1

Take the natural log once more:

ln(lny)=ln((lnx)^(ln(lnx)+1))=(ln(lnx)+1)(ln(lnx))ln(lny)=ln((lnx)ln(lnx)+1)=(ln(lnx)+1)(ln(lnx))

Now take the derivative of both sides. Use the chain rule on the left and product and chain rules on the right.

1/lny(d/dxlny)=(d/dx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(d/dxln(lnx))1lny(ddxlny)=(ddx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(ddxln(lnx))

1/lny(1/y)dy/dx=(1/lnxd/dxlnx)ln(lnx)+(ln(lnx)+1)(1/lnxd/dxlnx)1lny(1y)dydx=(1lnxddxlnx)ln(lnx)+(ln(lnx)+1)(1lnxddxlnx)

1/(ylny)dy/dx=ln(lnx)/(xlnx)+(ln(lnx)+1)/(xlnx)1ylnydydx=ln(lnx)xlnx+ln(lnx)+1xlnx

Solving for the derivative:

dy/dx=(ylny(2ln(lnx)+1))/(xlnx)dydx=ylny(2ln(lnx)+1)xlnx

Substituting in yy and lnylny as defined and previously derived:

dy/dx=(x^((lnx)^(ln(lnx)))(lnx)^(ln(lnx)+1)(2ln(lnx)+1))/(xlnx)dydx=x(lnx)ln(lnx)(lnx)ln(lnx)+1(2ln(lnx)+1)xlnx

dy/dx=x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)dydx=x(lnx)ln(lnx)1(lnx)ln(lnx)(2ln(lnx)+1)

Jun 14, 2018

(dy)/(dx)=(y)/(x)xx(lnx)^(ln(lnx)){2ln(lnx)+1}dydx=yx×(lnx)ln(lnx){2ln(lnx)+1}

Explanation:

Let,

y=x^((lnx)^(ln(lnx))y=x(lnx)ln(lnx)

For simplicity we take,

N=(lnx)^(ln(lnx))N=(lnx)ln(lnx)

So, y=x^Ny=xN

Taking log ,we get

lny=lnx^N=N*lnxlny=lnxN=Nlnx , where , N=(lnx)^(ln(lnx))N=(lnx)ln(lnx)

=>lny=(lnx)^(ln(lnx))*lnx...to(A)

Again taking log,we get

ln(lny)=ln((lnx)^(ln(lnx))*lnx)

=>ln(lny)=ln((lnx)^(ln(lnx)))+ln(lnx)

=>ln(lny)=ln(lnx)(ln(lnx)+ln(lnx)

=>ln(lny)=ln(lnx)[ln(lnx)+1]

Diff. w. r. t. x ,"using "color(blue)"product and Chain Rule :"

1/(lny)*1/y(dy)/(dx)=ln(lnx)[1/lnx*1/x]+[ln(lnx)+1]xx1/lnx1/x

=>1/(lny)*1/y(dy)/(dx)=[1/lnx*1/x]{ln(lnx)+ln(lnx)+1}

=>1/(ylny)(dy)/(dx)=[1/(xlnx)]{2ln(lnx)+1}

=>(dy)/(dx)=(ylny)/(xlnx){2ln(lnx)+1}

OR. from (A) , we can put ,

color(blue)(lny=(lnx)^(ln(lnx))*lnx)

So,

(dy)/(dx)=(y)/(xlnx)xxcolor(blue)((lnx)^(ln(lnx)) *lnx) {2ln(lnx)+1}

=>(dy)/(dx)=(y)/(x)xx(lnx)^(ln(lnx)){2ln(lnx)+1}