Find the derivative of the function y=x² /arctgx ?

1 Answer
Jun 14, 2018

#dy/dx=(arctanx)^-2(2xarctanx-x^2/(x^2+1))#

Explanation:

#y=x^2/arctanx#

#y=x^2(arctanx)^-1#

Let's differentiate this using the product rule.

#dy/dx=(d/dxx^2)(arctanx)^-1+x^2(d/dx(arctanx)^-1)#

The derivative of #x^2# can be found with the product rule. To find the derivative of #(arctanx)^-1#, use the chain rule.

#dy/dx=2x(arctanx)^-1+x^2(-(arctanx)^-2)(d/dxarctanx)#

#dy/dx=2x(arctanx)^-1-x^2(arctanx)^-2(1/(x^2+1))#

#dy/dx=(arctanx)^-2(2xarctanx-x^2/(x^2+1))#