Find the derivative of the function y=x² /arctgx ?

1 Answer
Jun 14, 2018

dydx=(arctanx)2(2xarctanxx2x2+1)

Explanation:

y=x2arctanx

y=x2(arctanx)1

Let's differentiate this using the product rule.

dydx=(ddxx2)(arctanx)1+x2(ddx(arctanx)1)

The derivative of x2 can be found with the product rule. To find the derivative of (arctanx)1, use the chain rule.

dydx=2x(arctanx)1+x2((arctanx)2)(ddxarctanx)

dydx=2x(arctanx)1x2(arctanx)2(1x2+1)

dydx=(arctanx)2(2xarctanxx2x2+1)