Find the derivative of the function y=x² /arctgx ?
1 Answer
Jun 14, 2018
Explanation:
y=x2arctanx
y=x2(arctanx)−1
Let's differentiate this using the product rule.
dydx=(ddxx2)(arctanx)−1+x2(ddx(arctanx)−1)
The derivative of
dydx=2x(arctanx)−1+x2(−(arctanx)−2)(ddxarctanx)
dydx=2x(arctanx)−1−x2(arctanx)−2(1x2+1)
dydx=(arctanx)−2(2xarctanx−x2x2+1)